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SUPPLEMENRARY TEXT 

 

Model to establish the number of invading bacteria. Here we construct a statistical model to 

determine by which of two ways bacteraemia was generated. We consider the following two 

alternative hypotheses of blood invasion: (i) establishment a bacterial population occurs starting 

from a single bacterium per event (note that this can also include the scenario of multiple invasion 

events; however, we assume that in each event only a single bacterium can invade); (ii) in each 

event a certain number of bacteria w (w>1) is required to overcome the “host defence” and 

successfully invade the blood (as in the previous case we allow for multiple invasion events as 

well). Testing the above hypotheses is equivalent to determining whether a single bacterium or 

several bacteria were involved in founding a bacterial population in the blood per invasion event. 

Our model was adopted from that described by Margolis and Levin [1], but differed inasmuch as the 

challenge was performed with three different isogenic variants, which required utilization of a 

permutation based approach, instead of a binominal distribution [1]. The model assumes that 

bacteria enter and establish a population in the blood at random by escaping from spleen tissue and 

the three variants are equally likely to invade.  

 

Let us firstly consider establishing bacteraemia in a single mouse. We assume that the number of 

independent invasion events in a mouse, denoted by k, follows a Poisson distribution. This signifies 

that invasion events occur randomly with a constant average rate and independently of the time 

since the last event. Therefore the probability that k invasion events (k = 0, 1, 2, 3, …) occur in a 

mouse is given by: 

 
!k

ekP
k , 

where the parameter λ characterises the average rate of events. The particular case k=0 implies that 

no infection occurs. The value of λ can be calculated from the fact that    eP 0 . Using the data 

on the number of non-bacteraemic mice one can easily estimate the probability   nnP s /0  , where 

n is the total number of mice and ns is the number of non-bacteraemic mice in the experiment. Thus 

we obtain 
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Let w be the number of bacteria that are responsible for founding a blood population in each 

invasion event (w = 1, 2, 3, …). Note that in each event the composition of isogenic variants within 

w can differ and it is assumed to be independent from that of the previous event.  We denote i to be 

the number of variants observed in a single bacteraemic mouse. For convenience, we denote non-

bacteraemic case by i = 0 so that i = 0, 1, 2 and 3 represents non bacteraemic, single, double and 

triple variant scenarios, respectively. Now we can calculate the probability that i variants will be 

observed in a mouse given w and k:         . This is actually a conditional probability, i.e. it is the 

probability of observing an event in the case, where we are certain to have the given values of w and 

k. For example,                stands for the probability that a mouse has double variants 

in the blood if we are certain that a single cell is responsible for establishing the blood population in 

each of the events and the number of events is 2. It is easy to see that for any value of w, 

                                 for i = 1, 2, 3, 

in other words, without any invasion event (k=0), the probability to be infected is zero. 

 

In the case of some invasion events (k ≥ 1), the probability          can be calculated by using a 

standard permutation based approach, as in the case where we each time draw w balls from an urn 

containing balls of three colours and repeat k times with replacement and compute the probabilities 

of having single, double and triple colours. By doing this we assume that the number of bacteria in 

the stock (spleen tissue) is much higher than the number of escaped bacteria. In this case, the 

probabilities can be computed using the Bernoulli scheme with wk independent trials. We obtain k ≥ 
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Consider the case i=2, for instance. This corresponds to colonization by only two different bacterial 

variants after k events. Let us fix the two particular variants (e.g. choosing the first and the third 

variant). The given scenario will be possible in the case in any of wk ‘trials’ we should not have the 

second variant, with the probability to have such situation per trial being 2/3. This probability 

should be multiplied wk times by itself; we also need to subtract from it the probabilities of having 

only first or only third variants in all trials. This will give us (2/3)
kw 

− (1/3)
kw

− (1/3)
kw

. Finally, to 
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obtain          one needs to multiply the derived expression by the number of possibilities to 

choose 2 isogenic variants out of 3, i.e. by the factor of 3. 

 

Next we need to consider all possible number of invasion events k, by summing up          over k 

(k= 0, 1, 2, 3, …) and taking into account the probabilities to have exactly k events (described by 

the Poisson distribution P(k)). Thus, for instance, the probability        means that exactly i 

variants are observed in a mouse if w bacteria are responsible for establishing the blood population 

in each invasion event.  We can calculate        using a standard total probability formula: 
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From our data we find that the probability that more than three independent invasion events occur in 

a mouse (k>3) is rather small and thus was ignored in the above calculation.  

 

Given the total number of n mice, the expected numbers of individuals which are non-bacteraemic 

or infected with single, double or triple variants are given by 

 wiPnxi | , 

where w is the number of bacteria responsible for establishing the blood population in each invasion 

event. We assume that w is constant 

 

Table 2 reports these expected numbers for w = 1, 2, 3, 4 and the observed ones at the 24 h time 

point when there were a total of 55 mice. Based on the estimation method of λ it follows that the 

expected number of non bacteraemic mice was equal to the observed one (ns) this it is not presented 

in the table. The p-values of χ
2
 goodness-of-fit test were calculated after collapsing the double and 

triple due to the small expected frequencies in these two categories when w=1 which may lead to 

unreliable result.  
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